The John Wallis Academy – Curriculum Overview 2019-20

Subject: Maths
Year Group: 10F
Academic Year: 2019-20

<table>
<thead>
<tr>
<th></th>
<th>DP1</th>
<th>DP2</th>
<th>DP3</th>
</tr>
</thead>
</table>
| **Topic** | 9 Graphs
10 Transformations
11 Ratio and proportion | 12 Right-angled triangles
13 Probability
14 Multiplicative reasoning | 15 Constructions, loci and bearings
16 Quadratic equations and graphs
17 Perimeter, area and volume 2 |
| **Lesson Summary Breakdown** | | | |
| 9.1 Coordinates
9.2 Linear graphs
9.3 Gradient
9.4 \(y = mx + c \)
9.5 Real-life graphs
9.6 Distance-time graphs
9.7 More real-life graphs
9.8 Translation
9.9 Reflection
9.10 Rotation
9.11 Enlargement
9.12 Describing enlargements
9.13 Combining transformations | 11.1 Writing ratios
11.2 Using ratios 1
11.3 Ratios and measures
11.4 Using ratios 2
11.5 Comparing using ratios
11.6 Using proportion
11.7 Proportion and graphs
11.8 Proportion problems | 12.1 Pythagoras' theorem 1
12.2 Pythagoras' theorem 2
12.3 Trigonometry: the sine ratio 1
12.4 Trigonometry: the sine ratio 2
12.5 Trigonometry: the cosine ratio
12.6 Trigonometry: the tangent ratio
12.7 Finding lengths and angles using trigonometry | 13.1 Calculating probability
13.2 Two events
13.3 Experimental probability
13.4 Venn diagrams
13.5 Tree diagrams
13.6 More tree diagrams
14.1 Percentages
14.2 Growth and decay
14.3 Compound measures
14.4 Distance, speed and time
14.5 Direct and inverse proportion | 15.1 3D solids
15.2 Plans and elevations
15.3 Accurate drawings 1
15.4 Scale drawings and maps
15.5 Accurate drawings 2
15.6 Constructions
15.7 Loci and regions
15.8 Bearings
16.1 Expanding double brackets
16.2 Plotting quadratic graphs
16.3 Using quadratic graphs
16.4 Factorising quadratic expressions
16.5 Solving quadratic equations algebraically | 17.1 Circumference of a circle 1
17.2 Circumference of a circle 2
17.3 Area of a circle
17.4 Semicircles and sectors
17.5 Composite 2D shapes and cylinders
17.6 Pyramids and cones
17.7 Spheres and composite solids |
| **Progress Range** | F2 - 4 | F2 - 5 | F1 - 5 |
| **Assessment** | Unit tests – Termly Assessments | Unit tests – Termly Assessments | Unit tests – End of Year Assessment |
SMSC Links in Mathematics

Spiritual development in Mathematics
The study of mathematics enables students to make sense of the world around them and we strive to enable each of our students to explore the connections between their numeracy skills and every-day life. Developing deep thinking and an ability to question the way in which the world works promotes the spiritual growth of students. Students are encouraged to see the sequences, patterns, symmetry and scale both in the man-made and the natural world and to use maths as a tool to explore it more fully.

Moral development in Mathematics
The moral development of students is an important thread running through the mathematics syllabus. Students are provided with opportunities to use their maths skills in real life contexts, applying and exploring the skills required in solving various problems. For example, students are encouraged to analyse data and consider the implications of misleading or biased statistical calculations. All students are made aware of the fact that the choices they make lead to various consequences. They must then make a choice that relates to the result they are looking for. The logical aspect of this relates strongly to the right/wrong responses in maths.

Social development in Mathematics
Problem solving skills and teamwork are fundamental to mathematics through creative thinking, discussion, explaining and presenting ideas. Students are always encouraged to explain concepts to each other and support each other in their learning. In this manner, students realise their own strengths and feel a sense of achievement which often boosts confidence. Over time they become more independent and resilient learners.

Cultural development in Mathematics
Mathematics is a universal language with a myriad of cultural inputs throughout the ages. Various approaches to mathematics from around the world are used and this provides an opportunity to discuss their origins. This includes different multiplication methods from Egypt, Russia and China, Pythagoras’ Theorem from Greece, algebra from the Middle East and debates as to where Trigonometry was first used. We try to develop an awareness of both the history of maths alongside the realisation that many topics we still learn today have travelled across the world and are used internationally.